Following a request from a Linkedln friend to provide a solution that makes use of the Singapore model method to the question below—I couldn’t trace the origin of this word problem—here’s a quick-and-dirty sketch of a five-model-drawing solution.
Jazmine buys and sells antique dolls on the Internet. Yesterday, she focused on dolls from the Civil War period. She began the day by selling one-fourth of her dolls from that period. Then she sold six more. Just before lunch she sold one-fourth of the remaining Civil War dolls. After lunch, she bought some Civil War dolls, increasing her collection by one-sixth. Then she bought some more, doubling her collection. Just before she quit for the day, she sold two thirds of her Civil War dolls. After all that, she had fourteen of these dolls left. How many dolls did Jazmine have before she began trading yesterday?
It wouldn’t be surprising that this kind of brain-unfriendly word problem, set in a test or exam, might give some un-mathophobic grade five or six students sweaty palms, or goose pimples, if they started feeling clueless after attempting to solve it for some five odd minutes!
A quick-and-dirty solution that makes use of the model method.
Using the “work backwards” strategy repeatedly, the model drawings show that Jazmine had 40 dolls before she began trading yesterday.
If you’re an “algebraic freak,” by all means, use algebra to check your answer—I decided to give the algebraic approach a miss this time round.
Disproportionate parts or units
Notice that I’ve loosely used “units” and “parts” alternately to represent each model drawing. And I’ve also used each unit, or part, in a rather disproportionate manner, as compared to textbooks’ modeled solutions, which generally depict the bars (or rectangles) proportionately, based on their respective numerical values—which is secondary to the reasoning or thinking processes.
The above dolls problem is similar to a question I discussed in an earlier post, except that the present one is slightly harder; otherwise, it adopts the same problem-solving strategies for its solution.
Sakamoto and Stack Methods
My next task is to check whether the Stack method or the Sakamoto method to the above word problem is conceptually “friendlier” than the model method. Are there intuitive or elegant solutions other than the one that embraces the bar method? Meanwhile, please send us your solution(s) to the dolls problem.
© Yan Kow Cheong, March 27, 2013.
Postscript: Although math was my favorite subject in school, I don’t recall solving questions similar to the above word problem. I doubt if I would be able to solve it when I was in grade five or six. It looks like this present younger generation has been given the shorter end of the mathematical stick—worse, if math happens not to be their cup of tea! It’s no surprise that strangers, young and old, angrily tell me of their negative mathematical experiences in school—how they disliked math (and their math teachers).
Your method of explaining all in this post is truly good,
all can effortlessly understand it, Thanks a
lot.