Tag Archives: stack modeling

Calculus for Cats

If you had to choose between cat and calculus, which one would you save, especially if you happened to be a cat-and-math lover?

A math meme that pokes fun at the MAGA cult

Unlike dogs that are faithful, loyal, and obedient, cats are unpredictable, independent, and creative.

Yes, you can rely on a dog to unconditionally love you back even after you’ve scolded or even ill-treated them. The same treatment could hardly be said of or expected from a “never-forget” cat, who’s often the master (or lord) of their owner.

Know who’s the boss at home. Art stolen from “Kitty Corner” on FB.

It’s probably not a coincidence that a title like Calculus for Cats doesn’t just sound catchy (or even sexy), but it’s also apt for the feline family for a number of reasons.

Arguably, most dogs and puppies could handle algebra and trigonometry (or even pre-calculus), but cats and kittens, blessed with a “higher IQ” than their canine counterparts, could apparently manage calculus as well—or even intuitive topology in the hands of a geeky trainer.

Why aren’t more people christening their cat “Newton”?

Philosophically, dogs are peasants; cats are poets.

Singapore’s Cat Problem Solvers

It’s said that most dogs solve elementary math word problems religiously using algebra, without much appreciation (or comprehension?) of what they’re doing, unlike [lazy] cats—who’re always on the lookout for a shorter or creative way—that are prone to using the intuitive bar or stack model method to solving them.

Based on TIMSS and PISA rankings, it’s probably not an exaggeration to say that zero resources Singapore has done a relatively good job vis-à-vis other high GDP nations (with a much higher education budget) in nurturing its students (and teachers) into cat problem solvers.

Are You a Cat or Dog?

As a mathematical problem solver, are you more cat than dog? Or, to play safe, would you rather not rock the boat, by reluctantly being a dog math educator? Besides, you probably feel safer to sticking to routine algebraic methods than exploring nontraditional strategies in solving brain-unfriendly questions.

The “lazy” one does nothing; the “bees-zy” one does anything and everything.

No Sacrificial Lamb

Coming back to the dilemma between cat and calculus, if you’re a geeky cat lover, which one would you choose?

Assuming that no dog would be made the scapegoat to substitute the “unlucky” one, which one would you sacrifice or die for to keep one over the other?

Wisely yours

© Yan Kow Cheong, December 22, 2024.

Art by Rina Piccolo. @RinaPiccolo

The Fake Bar Model Method

Recently, I was peeping at some postings on the Facebook PSLE Parents group, and I came across the following question:

Philip had 6 times as many stickers as Rick. After Philip had given 75 stickers to Rick, he had thrice as many stickers as Rick. How many stickers did they have altogether?

Here are two solutions that caught my attention to the above primary or grade 6 word problem.

Solution contributed by Izam Marwasi Solution by Izam Marwasi
Solution by Jenny Tan Solution by Jenny Tan

Pseudo-Bar Model Method?

Arguably, the solution by the first problem solver offered to parents looks algebraic, to say the least. Some of you may point out that the first part uses the “unitary method,” but it’s the second part that uses algebra. Fair, I can accept this argument.

Since formal algebra, in particular the solving of algebraic equations, isn’t taught in primary or grade six, did the contributor “mistake” his solution for some form of bar model solution, although no diagram was provided? It’s not uncommon to see a number of pseudo-bar model solutions on social media or on the Websites of tuition centers, when in fact, they are algebraic, with or without any model drawings.

Many parents, secondary school teachers, or tutors, who aren’t versed with the bar model method, subconsciously use the algebraic method, with a bar model, which on closer look, reveals that the mental processes are indeed algebraic. No doubt this would create confusion in the young minds, who haven’t been exposed to formal algebra.

Does the Second Solution Pay Lip Service to Design Thinking?

What do you make of the second solution? Did you get it on first reading? Do you think an average grade five or six student would understand the logic behind the model drawing? From a pedagogical standpoint, the second solution is anything but algebraic. Although it makes use of the bar model method, I wonder what proportion of parents and their children could grasp the workings, without some frustration or struggle.

One common valid complaint by both parents and teachers is that in most assessment (or supplementary) math books that promote bar modeling, even with worked-out solutions to these oft-brain-unfriendly word problems, they’re often clueless how the problem solver knew in the first place that the bar model ought to be presented in a certain way—it’s almost as if the author knew the answer, then worked backwards to construct the model.

Indeed, as math educators, in particular, math writers, we haven’t done a good job in this area in trying to make explicit the mental processes involved in constructing the model drawings. Failure to make sense of the bar models has created more anxiety and fear in the minds of many otherwise above-average math students and their oft-kiasu parents.

Poor Presentation Isn’t an Option

Like in advanced mathematics, the poor excuse is that we shouldn’t be doing math like we’re writing essays! No one is asking the problem solver or math writer to write essays or long-winded explanations. We’re only asking them to make their logic clear: a good presentation forces them to make their thinking clearer to others, and that would help them to avoid ambiguity. Pedantry and ambiguity, no; clarity and simplicity, yes!

Clear Writing Is Clear Thinking

It’s hard work to write well, or to present one’s solution unambiguously. But that’s no excuse that we can afford to be a poor writer, and not a good thinker. As math educators or contributors, we’ve an obligation to our readers to make our presentation as clear as possible. It’s not enough to present a half-baked solution, on the basis that the emphasis in solving a math problem is to get the correct answer, and not waste the time to write grammatically correct sentences or explanations.

I Am Not a Textbook Math Author, Why Bother to Be Precise?

As teachers, we dread about grading students’ ill-written solutions, because most of us don’t want to give them a zero for an incorrect answer. However, if we’re convinced based on their argument that they do know what they’re doing, or show mathematical understanding or maturity of the concepts being tested, then we’d only minus a few marks for careless computation.

Poorly constructed or ill-presented arguments, mathematical or otherwise, don’t make us look professional. Articulating the thinking processes of our logical arguments helps us to develop our intellectual maturity; and last but not least, it makes us become a better thinker—and a better writer, too.

© Yan Kow Cheong, November 1, 2017.