Tag Archives: problem solving

Is Singapore math frickin’ hard?

There is a millennium myth that Singapore math is hard or tough—that only geeks from some remote parts of Asia (or from some red little dot on the world map) should do it. The mass media (and math educators, too) have implicitly mythologized that those who are presently struggling with school math, should avoid Singapore math, in whatever form it’s being presented, totally. A grave mistake, indeed!

Is Singapore math a mere fad?

After reading dozens of tweets and blog posts on the pluses and minuses of Singapore math, it sounds as if Singapore math has a certain mystique around it—some kind of foreign math bestowed by some creatures from outer space to terrorize those who wished math were an optional subject in elementary school.

Not to say, folks who totally reject Singapore math on the basis that it’s just another fad in math education, or another marketing gimmick to promote an allegedly “better foreign curriculum” to math educators. They believe that “back-to-basics math,” whatever that phrase means to them, with all its memorizing and drill-and-kill exercises, is a necessary mathematical evil to get kids to learn arithmetic.

Singapore math OR/AND Everyday Math

Singapore math? Sure, no problem! It’s no big deal!

Well, it’s a big deal for traditional publishers, which may lose tons of money if more states and schools continue to embrace this “foreign brand” of math education.

Poor writing and teaching from a number of us could have indirectly contributed to the white lie that if you can’t cope with Everyday Math or Saxon Math, or whatever math textbook your school or state is currently using, Singapore math is worse! You might as well forget about it!

Picture

One of the first few Singapore supplementary titles to promote the model method in the mid-nineties.

The bar method as a powerful problem-solving strategy

Objectively speaking, Singapore math doesn’t come close to most pedagogical insights or creative ideas featured in journals and periodicals published by the MAA and the NTCM. Personally, I must admit that I become a better teacher, writer, and editor, thanks to these first-class publications. The Singapore model method, although a key component of the Singapore math curriculum, is just one of the problem-solving strategies we use every day, as part of our problem-solving toolkit.

On the other hand, for vested interests on the part of some publishers, little has been done to promote other problem-solving strategies, such as the Stack Method and the Sakamoto method, which are as powerful, if not more elegant, than the bar method—in fact, more and more local students and teachers are using them as they see their advantages over the model method in a number of problem situations.

Picture

Fabien Ng in his heyday was a household name in mathematics education in Singapore—it looks like he’s since almost disappeared from the local publishing scene.

Don’t throw out the mathematical baby yet!

You may not wish to adopt the Singapore math curriculum, or even part of it; but at least consider the model and stack methods, not to say, the Sakamoto method, as part of your arsenal of problem-solving strategies (or heuristics, as we call them here). Don’t let traditional publishers (or “math editors” with a limited repertoire of problem-solving strategies) prevent you from acquiring new mathematical tools to improve your mathematical problem-solving skills.

In Singapore, the model, or bar, method is formally taught until grade six to solve a number of word problems, because from grade seven onwards, we want the students to switch over to algebra. However, this doesn’t mean that we’d totally ban the use of the model method in higher grades, because in a number of cases, the model or stack method often offers a more elegant or intuitive method of solution than its algebraic counterpart.

© Yan Kow Cheong, May 27, 2013.

Picture

A booklet comprising of PSLE (grade 6) past exam papers, which cost me only 88 cents in the eighties.

A Singapore Grade Two Tricky Question

A classic elementary math problem that folks from a number of professions, from psychologists to professors to priests like to ask is the following:

A bat and a ball cost $1.10 in total. 
The bat costs a dollar more than the ball. 
How much does the ball cost?

For novice problem solvers, the immediate, intuitive answer is 10 cents. Yet the correct response is 5 cents. Why is that so?

If the ball is 10 cents, then the bar has to cost $1.10, which totals $1.20. Why do most of us jump to the wrong conclusion—that the ball costs 10 cents?

We should expect few students to bother checking whether the intuitive answer of 10 cents could possibly be wrong. Research by Professor Shane Frederick (2005) finds that this is the most popular answer even among bright college students, be they from MIT or Harvard.

A few years ago, I included a similar question for a grade 2 supplementary title, as it was in vogue in some local text papers. See the question below.

Recently, while revising the book, I saw that the model drawing had been somewhat modified by the editor. Although a model drawing would likely help a grade 2 child to better visualize what is happening, however, a better shading, or the use of a dotted line, would have made the model easier to understand. Can you improve the model drawing?

Picture

Try to solve the above question in a different way, using the same model drawing.

Interestingly, I find out that even after warning students of the danger of simply accepting the obvious answer, or reminding them of the importance of checking their answer, variations of the above question do not seem to help them improve their scores. I recently tickled my Fan page readers with the following mathematical trickie.

Two cousins together are 11. 
One is 10 years older than the other. 
Find out how old both of them are.

Let me end with this Cognitive Reflection Test (CTR), which is made up of tricky questions whose answers tend to trap the unwary, and which may be suitably given to problem solvers in lower grades.

1. If it takes 5 machines 5 minutes to make 5 bearings, how long would it take 100 machines to make 100 bearings?

2. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

3. A frog is climbing up a wall which is 12 m high. Every day, it climbs up 3 m but slips down 2 m. How many days will it take the frog to first reach the top of the wall?

4. A cyclist traveled from P to Q at 20 km/h, and went back at 10 km/h. What is his average speed for the entire journey?

5. It costs $5 to cut a log into 6 pieces. How much will it cost to cut the log into 12 pieces?

Expected incorrect answers

1. 100 minutes. 2. 24 days. 3. 12 days. 4. 15 km/h 5. $10

Correct answers

References

Donnelly, R. (2013). 
The art of thinking clearly. UK: Sceptre.

Yan, K. C. (2012). Mathematical quickies & trickies. Singapore: MathPlus Publishing.

Postscript: What’s your CTR score? Here is something to ponder about: Those with a high CTR score are often atheists; those with low CTR results tend to believe in God or some deity.

© Yan Kow Cheong, May 7, 2013.

Picture

For practice on the Singapore model method, this title may help—visit Singaporemath.com

The Dolls Problem à la Singapour

Following a request from a Linkedln friend to provide a solution that makes use of the Singapore model method to the question below—I couldn’t trace the origin of this word problem—here’s a quick-and-dirty sketch of a five-model-drawing solution.

Jazmine buys and sells antique dolls on the Internet. Yesterday, she focused on dolls from the Civil War period. She began the day by selling one-fourth of her dolls from that period. Then she sold six more. Just before lunch she sold one-fourth of the remaining Civil War dolls. After lunch, she bought some Civil War dolls, increasing her collection by one-sixth. Then she bought some more, doubling her collection. Just before she quit for the day, she sold two thirds of her Civil War dolls. After all that, she had fourteen of these dolls left. How many dolls did Jazmine have before she began trading yesterday?

It wouldn’t be surprising that this kind of brain-unfriendly word problem, set in a test or exam, might give some un-mathophobic grade five or six students sweaty palms, or goose pimples, if they started feeling clueless after attempting to solve it for some five odd minutes!

Picture

A quick-and-dirty solution that makes use of the model method.

Using the “work backwards” strategy repeatedly, the model drawings show that Jazmine had 40 dolls before she began trading yesterday.

If you’re an “algebraic freak,” by all means, use algebra to check your answer—I decided to give the algebraic approach a miss this time round.

Disproportionate parts or units

Notice that I’ve loosely used “units” and “parts” alternately to represent each model drawing. And I’ve also used each unit, or part, in a rather disproportionate manner, as compared to textbooks’ modeled solutions, which generally depict the bars (or rectangles) proportionately, based on their respective numerical values—which is secondary to the reasoning or thinking processes.

The above dolls problem is similar to a question I discussed in an earlier post, except that the present one is slightly harder; otherwise, it adopts the same problem-solving strategies for  its solution.

Sakamoto and Stack Methods

My next task is to check whether the Stack method or the Sakamoto method to the above word problem is conceptually “friendlier” than the model method. Are there intuitive or elegant solutions other than the one that embraces the bar method? Meanwhile, please send us your solution(s) to the dolls problem.

© Yan Kow Cheong, March 27, 2013.

Postscript: Although math was my favorite subject in school, I don’t recall solving questions similar to the above word problem. I doubt if I would be able to solve it when I was in grade five or six. It looks like this present younger generation has been given the shorter end of the mathematical stick—worse, if math happens not to be their cup of tea! It’s no surprise that strangers, young and old, angrily tell me of their negative mathematical experiences in school—how they disliked math (and their math teachers).

Algebra or Model Method

On December 19, 2012, in her Confession from a Homeschool Mom: Singapore Math Stumped Me Today, Monise L. Seward, blogged that her 6th grader woke her up to ask her for help on a word problem in her Singapore Math book. The nonroutine question she shared was the following:

Mrs. Pappas had some apples. She sold 1/3 of the apples plus 5 more on the first day. She sold 1/3 of the remaining apples plus 5 more on the second day. She had 125 apples left in the end. How many apples did Mrs. Pappas have in the beginning?

If you use algebra to solve this problem, it’s unlikely that the working will arouse any excitement; in fact, you may find this method of solution to be somewhat uninteresting or boring. Yes, algebra does religiously solve the problem, but the solution is anything but elegant. Moreover, most average grade five or six students wouldn’t have acquired the maturity to solve it algebraically.

An algebraic check

Besides working backwards to check the answer, after solving the question, using the Singapore model method, I also checked it out by algebra.Looking at the symbolic clutter, I guessed then that even our Singapore grades 7 and 8 average students would likely be challenged to solve this problem by algebraic means.If we stick to working with only one variable, then we may end up with an unappetizing equation such as the following to solve.

Picture

A mum’s solution

Without a good working knowledge with the Singapore model method, we can expect most teachers and parents (who still remember their school math) to solve the question in a way similar to the one sketched and tweeted by my Pinterest and Twitter friend at PragmaticMom.com, as shown below:

2/3x – 5 = 125

2/3x = 125 + 5

2/3x = 130

x = (130 x 3)/2

x = 195

You add the 5 because you have to subtract the 5 apples from the 2/3 calculation because they were added in additionally. Then you do it again …

2/3x – 5 = 195

2/3 x = 195 + 5

2/3 x = 200

x = (200 x 3)/2

x = 300

No algebra, please!

Pretend for a while that algebra is an alien language to you! And you can only use a non-algebraic explanation to communicate your solution to a ten-year-old child! How would you go about doing it? Can you think of some intuitive methods?

After coming across this grade six question via @pragmaticmom, I tweeted a quick-and-dirty solution to the above problem, using the model, or bar, method. Give it a try first, before comparing yours with mine.

Sakamoto math

I also remarked that we could also solve this question by the Sakamoto method, which I assumed most of you in the United States might not be familiar with; so I’ll skip presenting the Japanese method of solution here.

Working backwards

Had the above grade five or six question involved the fraction 1/2 instead of 1/3, then using the “work backwards” strategy, via a flow chart, would have yielded an equally decent method of solution as the model approach.

Mrs. Pappas had some apples. She sold 1/2 of the apples plus 5 more on the first day. She sold 1/2 of the remaining apples plus 5 more on the second day. She had 125 apples left in the end. How many apples did Mrs. Pappas have in the beginning?

See a sketch of a common method of solution below.

Picture

Two bonus questions

Let me leave you with two grade 3/4 problems that lend themselves easily to the model method.1. A shop owner sold 2 more iPads than half the number of iPads in his stock. He then sold 2 fewer iPads than half of the remaining iPads. If he was left with 28 iPads, how many iPads did he have in his stock in the beginning?

2. Sarah used $8 to buy a book. She then used half of the remaining money to buy a bag. Lastly, she spent $1 more than half of what she had left on a meal. In the end, she had only $5 left. How much money had Sarah at first?
Answers: 1. 108 iPads; 2. $32

© Yan Kow Cheong, March 13, 2013.