Tag Archives: Challenging word problems

Singapore Math Books on the Bar Model Method

In recent years, because of the popularity of Singapore math books being promoted and used in many countries, suddenly local publishers seemed to have been hit by an aha! moment. They realized that it’s timely (or simply long overdue?) that they should come up with a general or pop book on the Singapore’s model (or bar) method for the lay public, especially among those green to the problem-solving visualization strategy.

Monograph à la Singapour

The first official title on the Singapore model method to hit the local shelves was one co-published by the Singapore’s Ministry of Education (MOE) and Panpac Education, which the MOE christened a “monograph” to the surprise of those in academia. Thank God, they didn’t call it Principia Singapura!

The Singapore Model MethodA wallet-unfriendly title that focuses on the ABC of the Singapore’s problem-solving visualization strategy

This wallet-unfriendly—over-promise, under-deliver— title did fairly well, considering that it was the first official publication by the MOE to feature the merits of the Singapore’s model method to a lay audience. Half of the book over-praises the achievements of the MOE in reversing the declining math performance of local students in the seventies and eighties, almost indirectly attributing Singapore’s success in TIMMS and PISA to the model method, although there has never been any research whatsoever to suggest that there is a correlation between the use of the model method and students’ performances in international comparison studies.

Busy and stressed local parents and teachers are simply not interested in reading the first part of this “monograph”; they’re looking for some practical teaching strategies that could help them coach their kids, particularly in applying the model method to solving word problems. However, to their utter disappointment, they found out that assessment (or supplementary) math books featuring challenging word problems are a better choice in helping them master the problem-solving strategy, from the numerous graded worked examples and detailed (and often alternative) solutions provided—and most of them cost a fraction of the price of the “monograph.”

A Missed Opportunity for a Better Strategy

Not long after the MOE’s publication, the Singapore public was spoilt with another local title on the bar method. Unfortunately, the editorial team working on Bar Modeling then didn’t take advantage of the lack of breadth and depth of the MOE’s “monograph” to offer a better book in meeting the needs and desires of local parents and overseas math educators, especially those not versed with the bar model method.

Bar ModelingAnother wallet-unfriendly title that ill-prepares local parents and teachers to mastering the model, or bar, method in solving non-routine word problems

Based on some investigation and feedback why Dr. Yeap Ban Har didn’t seize the opportunity to publish a better book than the one co-published by the MOE, it sounds like Dr. Yap had submitted his manuscript one or two years prior to the MOE’s publication, but by the time his publisher realized that the MOE had released a [better?] book similar to theirs, they had little time to react (or maybe they just over-reacted to the untimely news?); as a result, they seemed to have only made some cosmetic changes to the original manuscript. Sounds like what we call in local educational publishing as an example of “editors sitting on the manuscript” for ages or years only to decide publishing it when a competitor has already beaten them to the finishing line.

This is really a missed opportunity, not to say,  a pity that the editorial team failed to leverage on the weaknesses or inadequacies of the MOE title to deliver a better book to a mathematically hungry audience, at an affordable price.

Is Another Bar Model Method Book Needed?

Early this year, we’re blessed with another title on the bar method, and this time round, it’s reasonably affordable, considering that the contents are familiar to most local teachers, tutors, and educated parents. This 96-page publication—no re-hashed Dr. Kho articles and authors’ detailed mathematical achievements—comprises four topics to showcase the use of the model method: Whole Numbers, Fractions, Ratio, and Percentage.

As in Dr. Yeap book, the questions unfortunately offer only one model drawing, which may give novices the impression that no alternative bar or model drawings are possible for a given question. The relatively easy questions would help local students gain confidence in solving routine word problems that lend themselves to the model method; however, self-motivated problem solvers would find themselves ill-equipped to solve non-routine questions that favor the visualization strategy.

In the preface, the authors emphasized some pedagogical or conceptual points about the model method, which are arguably debatable. For example, on page three, they wrote:

“In the teaching of algebra, teachers are encouraged to build on the Bar Model Method to help students and formulate equations when solving algebraic equations.”

Are we not supposed to wean students off the model method, as they start taking algebraic food for their mathematical diet? Of course, we want a smooth transition, or seamless process, that bridges the intuitive visual model method to the abstract algebraic method.

Who Invented the Model method?

Because one of the authors had previously worked with Dr. Kho Tek Hong, they mentioned that he was a “pioneer of the model method.” True, he was heading the team that made up of household names like Hector Chee and Sin Kwai Meng, among others, who helped promote the model method to teachers in the mid-eighties, but to claim that Dr. Kho was the originator or inventor of the bar method sounds like stretching the truth. Understandably, it’s not well-known that the so-called model method was already used by Russian or American math educators, decades before it was first unveiled among local math teachers.

I’ll elaborate more on this “acknowledgement” or “credit” matter in a future post—why the bar model method is “math baked in Singapore,” mixing recipes from China, US, Japan, Russia, and probably from a few others like Israel and UK.

Mathematical Problem Solving—The Bar Model MethodA wallet-friendlier book on the Singapore model method, but it fails to take advantage of the weaknesses of similar local and foreign titles on the bar method

Mr. Aden Gan‘s No-Frills Two-Book Series

Let me end with two local titles which I believe offer a more comprehensive treatment of the Singapore model method to laypersons, who just want to grasp the main concepts, and to start applying the visual strategy to solving word problems. I personally don’t know the author, nor do I have any vested interest in promoting these two books, but I think they’re so far the best value-for-money titles in the local market, which could empower both parents and teachers new to the model method to appreciate how powerful the problem-solving visualization strategy is in solving non-routine word problems.

A number of locals may feel uneasy in purchasing these two math books published by EPH, the publishing arm of Popular outlets, because EPH’s assessment math books are notoriously known to be editorially half-baked, and EPH every now and then churns out reprinted or rehashed titles whose contents are out of syllabus. However, my choice is still on these two wallet-friendly local books if you seriously want to learn some basics or mechanics on the Singapore model (or bar) method—and if editorial and artistic concerns are secondary to your elementary math education.

Singapore Model MethodA no-frills two-assessment-book series that gives you enough basic tools to solve a number of grades 5–6 non-routine questions

References

Curriculum Planning & Development Division Ministry of Education, Singapore (2009). The Singapore model method. Singapore: EPB Pan Pacific.

Gan, A. (2014). More model methods and advanced strategies for P5 and P6. Singapore: Educational Publishing House Pte. Ltd.

Gan, A. (2011). Upper primary maths model, methods, techniques and strategies. Singapore: Educational Publishing House Pte Ltd.

Lieu, Y. M. & Soo, V. L. (2014). Mathematical problem solving — The bar model method. Singapore: Scholastic Education International (Singapore) Private Limited.

© Yan Kow Cheong, August 5, 2014.

The Singapore Excess-and-Shortage Problem

In Singapore, in grades four and five, there is one type of word problems that seldom fail to appear in most local problem-solving math books and school test papers, but almost inexistent in local textbooks and workbooks. This is another proof that most Singapore math textbooks ill-prepare local students to tackle non-routine questions, which are often used to filter the nerd from the herd, or at least stream the “better students” into the A-band classes.

Here are two examples of these “excess-and-shortage word problems.”

Some oranges are to be shared among a group of children. If each child gets 3 oranges, there will be 2 oranges left. If each child gets 4 oranges, there will be a shortage of 2 oranges. How many children are there in the group?

A math book costs $9 and a science book costs $7. If Steve spends all his money in the science books, he still has $6 left. However, if he buys the same number of math books, he needs another $8 more.
(a) How many books is Steve buying?
(b) How much money does he have?

A Numerical Recipe

Depicted below is a page from a grade 3/4 olympiad math book. It seems that the author preferred to give a quick-and-easy numerical recipe to solving these types of excess-and-shortage problems—it’s probably more convenient and less time-consuming to do so than to give a didactic exposition how one could logically or intuitively solve these questions with insight.

A page from Terry Chew’s “Maths Olympiad” (2007).

Strictly speaking, it’s incorrect to categorize these questions under the main heading of “Excess-and-Shortage Problems,” because it’s not uncommon to have situations, when the conditions may involve two cases of shortage, or two instances of excess.

In other words, these incorrectly called “excess-and-shortage” questions are made up of three types:
・Both conditions lead to an excess.
・Both conditions lead to a lack or shortage.
・One condition leads to an excess, the other to a shortage.

One Problem, Three [Non-Algebraic] Methods of Solution

Let’s consider one of these excess-and-shortage word problems, looking at how it would normally be solved by elementary math students, who have no training in formal algebra.

Jerry bought some candies for his students. If he gave each student 3 candies, he would have 16 candies left. If he gave each student 5 candies, he would be short of 6 candies.
(a) How many students are there?
(b) How many candies did Jerry buy?

If the above question were posed as a grade 7 math problem in Singapore, most students would solve it by algebra. However, in lower grades, a model (or intuitive) method is often presented. A survey of Singapore math assessment titles and test papers reveals that there are no fewer than half a dozen problem-solving strategies currently being used by teachers, tutors, and parents. Let’s look at three common methods of solution.

Method 1

20131026-231338.jpg

Difference in the number of candies = 5 – 3 = 2

The 16 extra candies are distributed among 16 ÷ 2 = 8 students, and the needed 6 candies among another 6 ÷ 2 = 3 students.

Total number of students = 8 + 3 = 11

(a) There are 11 students.

(b) Number of candies = 3 × 11 + 16 = 49 or  5 × 11 –  6 = 49

Jerry bought 49 candies.

Method 2

Let 1 unit represent the number of students.

20131027-213637.jpg

Since the number of candies remains the same in both cases, we have

3 units + 16  = 5 units – 6

20131026-231524.jpg

From the model,
2 units = 16 + 6 = 22
1 unit = 22 ÷ 2 = 11
3 units + 16 = 3 × 11 + 16 = 49

(a) There are 11 students.
(b) Jerry bought 49 candies.

Method 2 is similar to the Sakamoto method. Do you see why?

Method 3

The difference in the number of candies is 5 – 3 = 2.

20131026-231534.jpg

The extra 16 candies and the needed 6 candies give a total of 16 + 6 = 22 candies, which are then distributed, so that all students each received 2 extra candies.

The number of students is 22 ÷ 2 = 11.

The number of candies is 11 × 3 + 16 = 49, or 11 × 5 – 6 = 49.

Similar, Yet Different

Feedback from teachers, tutors, and parents suggests that even above-average students are often confused and challenged by the variety of these so-called shortage-and-excess problems, not including word problems that are set at a contest level. This is one main reason why a formulaic recipe may often do more harm than good in instilling confidence in students’ mathematical problem-solving skills.

Here are two grade 4 examples with a twist:

When a carton of apples were packed into bags of 4, there would be 3 apples left over. When the same number of apples were packed into bags of 6, there would still be 3 apples left over. What could be the least number of apples in the carton? (15)

Rose had some money to buy some plastic files. If she bought 12 files, she would need $8 more. If she bought 9 files, she would be left with $5. How much money did Rose have? ($44)

Conclusion

Exposing students of mixed abilities to various types of these excess-and-shortage word problems, and to different methods of solution, will help them gain confidence in, and sharpen, their problem-solving skills. Moreover, promoting non-algebraic (or intuitive) methods also allows these non-routine questions to be set in lower grades, whereby a diagram, or a model drawing, often lends itself easily to the solution.

References

Chew, T. (2008). Maths olympiad: Unleash the maths olympian in you — Intermediate (Pr 4 & 5, 10 – 12 years old). Singapore: Singapore Asian Publications.

Chew, T. (2007). Maths olympiad: Unleash the maths olympian in you — Beginner (Pr 3 & 4, 9 – 10 years old). Singapore: Singapore Asian Publications.

Yan, K. C. (2011). Primary mathematics challenging word problems. Singapore: Marshall Cavendish Education.

© Singapore Math, October 27, 2013.

PMCWP4-2See Worked Example 2 on page 8; try questions 7-8 on page 12.